Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cytosolic redox components regulate protein homeostasis via additional localisation in the mitochondrial intermembrane space.

Identifieur interne : 000377 ( Main/Exploration ); précédent : 000376; suivant : 000378

Cytosolic redox components regulate protein homeostasis via additional localisation in the mitochondrial intermembrane space.

Auteurs : Mauricio Cardenas-Rodriguez [Royaume-Uni] ; Kostas Tokatlidis [Royaume-Uni]

Source :

RBID : pubmed:28746987

Descripteurs français

English descriptors

Abstract

Oxidative protein folding is confined to the bacterial periplasm, endoplasmic reticulum and the mitochondrial intermembrane space. Maintaining a redox balance requires the presence of reductive pathways. The major thiol-reducing pathways engage the thioredoxin and the glutaredoxin systems which are involved in removal of oxidants, protein proofreading and folding. Alterations in redox balance likely affect the flux of these redox pathways and are related to ageing and diseases such as neurodegenerative disorders and cancer. Here, we first review the well-studied oxidative and reductive processes in the bacterial periplasm and the endoplasmic reticulum, and then discuss the less understood process in the mitochondrial intermembrane space, highlighting its importance for the proper function of the cell.

DOI: 10.1002/1873-3468.12766
PubMed: 28746987
PubMed Central: PMC5601281


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cytosolic redox components regulate protein homeostasis via additional localisation in the mitochondrial intermembrane space.</title>
<author>
<name sortKey="Cardenas Rodriguez, Mauricio" sort="Cardenas Rodriguez, Mauricio" uniqKey="Cardenas Rodriguez M" first="Mauricio" last="Cardenas-Rodriguez">Mauricio Cardenas-Rodriguez</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow</wicri:regionArea>
<placeName>
<settlement type="city">Glasgow</settlement>
<region type="country">Écosse</region>
</placeName>
<orgName type="university">Université de Glasgow</orgName>
</affiliation>
</author>
<author>
<name sortKey="Tokatlidis, Kostas" sort="Tokatlidis, Kostas" uniqKey="Tokatlidis K" first="Kostas" last="Tokatlidis">Kostas Tokatlidis</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow</wicri:regionArea>
<placeName>
<settlement type="city">Glasgow</settlement>
<region type="country">Écosse</region>
</placeName>
<orgName type="university">Université de Glasgow</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28746987</idno>
<idno type="pmid">28746987</idno>
<idno type="doi">10.1002/1873-3468.12766</idno>
<idno type="pmc">PMC5601281</idno>
<idno type="wicri:Area/Main/Corpus">000318</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000318</idno>
<idno type="wicri:Area/Main/Curation">000318</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000318</idno>
<idno type="wicri:Area/Main/Exploration">000318</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cytosolic redox components regulate protein homeostasis via additional localisation in the mitochondrial intermembrane space.</title>
<author>
<name sortKey="Cardenas Rodriguez, Mauricio" sort="Cardenas Rodriguez, Mauricio" uniqKey="Cardenas Rodriguez M" first="Mauricio" last="Cardenas-Rodriguez">Mauricio Cardenas-Rodriguez</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow</wicri:regionArea>
<placeName>
<settlement type="city">Glasgow</settlement>
<region type="country">Écosse</region>
</placeName>
<orgName type="university">Université de Glasgow</orgName>
</affiliation>
</author>
<author>
<name sortKey="Tokatlidis, Kostas" sort="Tokatlidis, Kostas" uniqKey="Tokatlidis K" first="Kostas" last="Tokatlidis">Kostas Tokatlidis</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow</wicri:regionArea>
<placeName>
<settlement type="city">Glasgow</settlement>
<region type="country">Écosse</region>
</placeName>
<orgName type="university">Université de Glasgow</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">FEBS letters</title>
<idno type="eISSN">1873-3468</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Cytosol (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Mitochondrial Membranes (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Protein Folding (MeSH)</term>
<term>Protein Transport (MeSH)</term>
<term>Proteins (chemistry)</term>
<term>Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Cytosol (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Membranes mitochondriales (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Pliage des protéines (MeSH)</term>
<term>Protéines (composition chimique)</term>
<term>Protéines (métabolisme)</term>
<term>Transport des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytosol</term>
<term>Mitochondrial Membranes</term>
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cytosol</term>
<term>Membranes mitochondriales</term>
<term>Protéines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Oxidation-Reduction</term>
<term>Protein Folding</term>
<term>Protein Transport</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Oxydoréduction</term>
<term>Pliage des protéines</term>
<term>Transport des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Oxidative protein folding is confined to the bacterial periplasm, endoplasmic reticulum and the mitochondrial intermembrane space. Maintaining a redox balance requires the presence of reductive pathways. The major thiol-reducing pathways engage the thioredoxin and the glutaredoxin systems which are involved in removal of oxidants, protein proofreading and folding. Alterations in redox balance likely affect the flux of these redox pathways and are related to ageing and diseases such as neurodegenerative disorders and cancer. Here, we first review the well-studied oxidative and reductive processes in the bacterial periplasm and the endoplasmic reticulum, and then discuss the less understood process in the mitochondrial intermembrane space, highlighting its importance for the proper function of the cell.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28746987</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>10</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-3468</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>591</Volume>
<Issue>17</Issue>
<PubDate>
<Year>2017</Year>
<Month>09</Month>
</PubDate>
</JournalIssue>
<Title>FEBS letters</Title>
<ISOAbbreviation>FEBS Lett</ISOAbbreviation>
</Journal>
<ArticleTitle>Cytosolic redox components regulate protein homeostasis via additional localisation in the mitochondrial intermembrane space.</ArticleTitle>
<Pagination>
<MedlinePgn>2661-2670</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/1873-3468.12766</ELocationID>
<Abstract>
<AbstractText>Oxidative protein folding is confined to the bacterial periplasm, endoplasmic reticulum and the mitochondrial intermembrane space. Maintaining a redox balance requires the presence of reductive pathways. The major thiol-reducing pathways engage the thioredoxin and the glutaredoxin systems which are involved in removal of oxidants, protein proofreading and folding. Alterations in redox balance likely affect the flux of these redox pathways and are related to ageing and diseases such as neurodegenerative disorders and cancer. Here, we first review the well-studied oxidative and reductive processes in the bacterial periplasm and the endoplasmic reticulum, and then discuss the less understood process in the mitochondrial intermembrane space, highlighting its importance for the proper function of the cell.</AbstractText>
<CopyrightInformation>© 2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cardenas-Rodriguez</LastName>
<ForeName>Mauricio</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tokatlidis</LastName>
<ForeName>Kostas</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>202308/Z16/Z</GrantID>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>08</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>FEBS Lett</MedlineTA>
<NlmUniqueID>0155157</NlmUniqueID>
<ISSNLinking>0014-5793</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003600" MajorTopicYN="N">Cytosol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051336" MajorTopicYN="N">Mitochondrial Membranes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="N">Protein Folding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">mitochondria</Keyword>
<Keyword MajorTopicYN="Y">oxidative folding</Keyword>
<Keyword MajorTopicYN="Y">reductive pathways</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>07</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>07</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>07</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>7</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>7</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28746987</ArticleId>
<ArticleId IdType="doi">10.1002/1873-3468.12766</ArticleId>
<ArticleId IdType="pmc">PMC5601281</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2004 Jun 1;1699(1-2):35-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15158710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):299-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2005 Apr;30(4):205-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15817397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Dec 15;83(6):947-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8521518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Nov 17;127(4):789-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17110337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Oct;267(20):6110-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11012662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2004 Sep 15;429(2):123-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15313215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2009 Dec 28;187(7):1007-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20026652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2015 Jan 15;26(2):195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25392302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Feb 18;327(3):774-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Nov 1;67(3):581-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1934062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Nov 15;20(22):6288-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11707400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2007 Nov 5;179(3):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17967948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Lett. 1999 Jun 1;68(2-3):397-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10424449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Mar 15;6:23071</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26975474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2014 Mar 4;19(3):357-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24561263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2012 Jun 15;31(14):3169-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22705944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Oct 22;163(3):560-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26496603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2015 Jan;11(1):64-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25402766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1964 Oct;239:3436-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14245400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 5;279(45):47057-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2008 Nov;9(11):1107-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18787558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Jun 25;5:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27343349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2141-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10051608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2013 Oct;280(20):4960-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23937629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 May 23;97(11):5854-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10801974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Dec 31;279(53):55341-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1038-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8430071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2010 Mar 22;188(6):821-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20308425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2012 Dec;11(12):1840-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22984289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Jul 23;98(2):217-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10428033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6463-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10841552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13048-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8917542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Apr 21;23(8):1709-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15057279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Sci. 2004 Mar;78(1):3-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14691207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Apr 10;284(15):10150-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19181668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2011 Jun 24;18(6):794-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21700214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Jul 17;14(14):3415-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7628442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 30;279(18):18952-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Oct 1;23(19):3735-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15359280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Apr 20;129(2):333-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17448992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Oct 13;270(5234):296-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7569979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2017 Mar 14;18(11):2729-2741</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28297675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2012 Oct;13(10):916-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22878414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Detect Prev. 2000;24(1):53-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10757123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Aug;10(8):1343-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18522489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 May;1830(5):3143-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22995213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Nov 1;18(21):5963-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10545108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Oct;267(20):6102-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11012661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1995 Mar 15;3(3):245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7788290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2006 Aug;31(8):455-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16815710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Nov 28;26(23):4801-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17972915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IUBMB Life. 2001 Jul;52(1-2):29-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11795589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Apr;44(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2014 Aug;42(4):952-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25109985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Aug 21;138(4):628-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2002 Nov;3(11):836-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12415301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2006 Mar;7(3):271-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16607396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21059946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1993 Sep 30;365(6445):464-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8413591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2012 Mar;37(3):85-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22178138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Jan 16;385(2):331-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19010334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2000 Mar;7(3):196-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10700276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jun 5;324(5932):1284-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19498160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Oct 15;279(42):43744-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15294910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Mar 1;18(5):1192-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10064586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Jan;10(1):55-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17939758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2001 Jun 1;30(11):1191-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11368918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2009 Feb;16(2):198-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19182799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2004 Jul;29(7):351-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15236742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Nov;1863(11):2613-2623</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27425144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1999 Mar;26(5-6):770-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10218667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2012 Nov 14;31(22):4348-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22990235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 May;20(10):2530-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19297525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Jul 1;121(7):1059-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15989955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Aug 18;289(5482):1190-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10947986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2005 Oct 28;353(3):517-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16185709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4811-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21383138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Immunol Ther Exp (Warsz). 2013 Oct;61(5):367-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23749029</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Écosse</li>
</region>
<settlement>
<li>Glasgow</li>
</settlement>
<orgName>
<li>Université de Glasgow</li>
</orgName>
</list>
<tree>
<country name="Royaume-Uni">
<region name="Écosse">
<name sortKey="Cardenas Rodriguez, Mauricio" sort="Cardenas Rodriguez, Mauricio" uniqKey="Cardenas Rodriguez M" first="Mauricio" last="Cardenas-Rodriguez">Mauricio Cardenas-Rodriguez</name>
</region>
<name sortKey="Tokatlidis, Kostas" sort="Tokatlidis, Kostas" uniqKey="Tokatlidis K" first="Kostas" last="Tokatlidis">Kostas Tokatlidis</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000377 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000377 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28746987
   |texte=   Cytosolic redox components regulate protein homeostasis via additional localisation in the mitochondrial intermembrane space.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28746987" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020